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We present a two-fold approach for strongly inhomogeneous plasmas for which 
the Chapman-Enskog asymptotic expansion breaks down: First, a heuristic 
one: we solve the kinetic equation by an iterative algorithm, and obtain a non- 
local response to the local gradients of the local maxwellian distribution 
function. The other approach consists in resummation methods of the Chap- 
man-Enskog expansion for the distribution function or for its velocity moments: 
we use Pad6 or Borel-Pad6 approximants, and obtain with the simplest ones 
delocalization formulas similar to those obtained by using the iterative 
algorithm. These formulas are of great potential use in any situation where 
strong temperature gradients occur (laser plasma interaction, stellar winds, 
cloud evaporation). 
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1. I N T R O D U C T I O N  

Among the basic problems of kinetic theory, the validity of the Chapman- 
Enskog development far from a continuum fluid regime stands out as one of 
the most striking questions/1~ This is of particular importance in plasma 
kinetic theory, since large gradients often occur in laboratory or 
astrophysical plasmas. Among various examples, one may quote the large 
temperature gradients generated in laser plasma interaction experiments, (2/ 
in the vicinity of the critical density where the laser deposits its energy, or 
the large temperature gradients in stellar winds, (3) or, in the interstellar 
medium when a cold cloud evaporates into the hot plasma due to a super- 
nova explosion. (4) 

1 Centre de Physique Th6orique, l~cole Polytechnique, 91128 Palaiseau Cedex, France. 
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In these situations the linear theory of heat transport may 
overestimate the heat flux in the steep part of the temperature gradient by 
as much as one order of magnitude. The linear theory is obtained as a 
result of the first order Chapman-Enskog expansion, (5~ and linearly relates 
the heat flux to the temperature gradient. In the case of an unmagnetized 
hot plasma the linear theory is due to Spitzer and H~irm. (6) The 
Spitzer-Hiirm theory has been extended to a hot magnetized plasma by 
Braginskii. (7) 

For a large temperature gradient, the linear theory predicts arbitrarily 
large values of the heat flux, which is clearly unphysical since the dis- 
tribution function cannot reasonably transport a heat flux larger than the 
so-called free streaming value qvs = ne Teve where ne, v~, Te are the electron 
density, temperature, and thermal velocity, ve = (T~/me)l/2. (8~ 

Mathematically, this breakdown of the theory corresponds to a failure 
of the validity condition of the first order Chapman-Enskog expansion, 
which states that the collision mean free path has to be smaller than a frac- 
tion of the macroscopic quantity (the temperature) scale length. 

From a theoretical point of view, the standard method is then to use 
higher orders of the Chapman-Enskog expansion. The fluxes are expressed 
as series in power of the macroscopic quantities gradients. However these 
expansions are usually asymptotic. In the case of a hot plasma (in this 
paper we only study weakly correlated plasmas) the divergency of the 
expansion is particularly strong, essentially because the Coulomb 
collisional mean free path increases with the fourth power of the particle 
velocity, and the Chapman-Enskog expansion is untractable. An alter- 
native method, the 13 moments method, was proposed by Grad, (9~ but was 
shown to give poor results in the case of a plasma. In particular it does not 
even recover the linear theory in the case of a weakly inhomogeneous 
plasma. (1~ In a strongly inhomogeneous plasma, it essentially introduces a 
time delay between the fluxes and the macroscopic quantities gradients, 
while numerical solutions of the kinetic equation do not show such 
features. In this paper, we present a new method which proves to be par- 
ticularly powerful in the case of a weakly collisional plasma. The spirit of 
the method is somewhat similar to the spirit of the Chapman--Enskog 
method in the sense that we express the fluxes, and more generally the 
moments of the electron distribution function as functions of the 
macroscopic quantities: density and temperature. However, these functions 
are nonlocal functions, while each term of the Chapman-Enskog expansion 
is proportional to local derivatives (of successively higher orders) of the 
macroscopic quantities. Of course these nonlocal functions can themselves 
be expanded in infinite series of powers of the local derivatives, so that our 
method is in some sense equivalent to successive partial resummations of 
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divergent terms of the Chapman Enskog expansion. More precisely our 
method consists in two complementary approaches: (i)A heuristic 
approach. We first write the kinetic equation under the form of a response 
equation to a self-consistent source, for which we propose an iterative 
solution. The kernel of the response is nonlocal, so that each iteration is 
equivalent to a partial resummation of the Chapman-Enskog expansion. 
From a practical point of view, the first iteration already provides a 
satisfactory result. (ii) Then, we propose a method of Pad6 and Borel-Pad6 
approximant for operators, which enables to approximate either the suc- 
cessive iterations of (i), or directly the kinetic equation projected on a given 
moment. 

The layout of the paper is as follows. In Section 2, we establish the 
basic equations and recall the Chapman-Enskog expansion results. Sec- 
tion 3 is devoted to the iterative solution of the kinetic equation. Finally, 
Section 4 presents the methods of Pad6 and Borel Pad6 approximant for 
operators and its application in the case of a kinetic plasma. 

2. T H E  C H A P M A N - E N S K O G  E X P A N S I O N  

2.1. The  Formal ism 

Let us consider the general form of kinetic equations, 

Of = C(f, f )  (2.1) 

0 is the free streaming operator and C is the bilinear collisional operator. 
The Chapman-Enskog expansion is built with reference to a local 
equilibrium distribution function. Let us be precise: Let fh be the local 
maxwellian distribution function of the same energy and density as f. One 
has 

and 

C(fh, fh) = 0 (2.2) 

C ( f , f ) = C ( f h , f ) + C ( f ,  f h ) + C ( f - f h ,  f - - f h )  (2.3) 

We call Lh the linear operator 

L h f  = C(fh, f )  + C(f, fh) (2.4) 

Ph is the projector onto the kernel of Lh, such that 

LhPh = PhL~, = 0 (2.5) 
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and Qh = 1 -  Ph- Then 

Ph f -= fh (2.6) 

Ph is in fact the projector on the fluid moments o f f  which satisfy conser- 
vation equations (density and temperature). The kinetic equation (2.1) is 
then split into its projections by Ph and Qh 

PhOPhf + PhOQhf = 0 (2.7) 

QhOPhf + QhOQhf= QhLhQhf + C(Qhf, Qhf) (2.8) 

Equation (2.7) does contain the usual fluid equations, the fluxes being con- 
tained in PhOQhf. On the other hand Eq. (2.8) formally allows us to 
calculate Qhf  as a function of QhOPhf 

Qhf  = --GhOPhf + GhC(GhOPhf, GhOPhf)+ "'" (2.9) 

where Gh is the inverse of the operator Qh(O-Lh)Qh. However, 
Qh(O- Lh) Qh is an integrodifferential operator, which is not separable in 
x and v, so that the practical determination of Gh is usually not possible. 
One then has to further develop Gh in power of the gradients 

Gh= --(Rh + RhORh + RhORhORh + "") (2.10) 

where Rh is the inverse of the purely collisional operator QhLhQh. 
Equations (2.9) and (2.10) correspond to the Chapman-Enskog expansion. 
One observes that the Chapman-Enskog expansion is really a double 
expansion. Expansion (2.9) is due to the bilinear term C(Qhf, Qhf), while 
expansion (2.10) is due to the nonseparability of the linear part of the 
kinetic equation. We want to stress at this point that we are interested in 
the problem set by the second expansion, Eq. (2.10), rather than in the 
bilinear character leading to Eq. (2.9). 

It is well known, in the case of the Boltzmann equation, that the above 
expansions are asymptotic. (1) In the case of the Fokker-Planck equation 
which governs the plasma evolution, the Chapman-Enskog method is 
similar, and there is no doubt--though it is not rigorously 
demonstrated--that the Chapman-Enskog expansion is also asymptotic. It 
will be illustrated in the next subsection. 

2.2. The  K ine t ic  P lasma 

We now restrict our analysis to the case of a kinetic, weakly correlated 
plasma. Because of the electron-to-ion mass ratio, the heat transport is 
essentially due to the electrons, so that we can assume fixed ions and solve 
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the Fokker-Planck equation which governs the electron distribution 
function. Electrons encounter two types of collisions: 

(i) Electron-ion collisions. Consistent with the above remark, we use 
the simplified expression that the operator takes in the limit mJm i --+ O. 
Physically this means that we neglect the energy transfer in electron-ion 
collisions. The corresponding operator reads (in the ion frame) 

Zc~ 
C e i f  = ' ~ 3  (~vi(t)2~Su - vii)j) O~;f (2.11) 

where e = Zni e4 In A/(4rce2m2). Note that Cei is already linear. Its eigenvec- 
tors are the angular Legendre polynomials. 

(ii) Electron-electron collisons. The e-e collision operator is 

O~ .f 3 ~ r Cee(f,f)=~n ~_dv(Ov-Ov,)p(v-v)(OV-Ov,) f (v) f (v ' )  (2.121 

where 

Pu(u)  =- (l/Ug)(bt2~12 i --  UiHj) (2.13) 

In the following, we will rather use the asymptotic high velocity 
approximation of (2.12). This is legitimated by the fact that the mean free 
path varies as the fourth power of the velocity, and that the heat transport 
is mainly due to rather high velocity electrons (3v~<v<4v~). The 
asymptotic form of (2.12) is 

C2~(f, f )  = 75 v~ , f  + ~v ~v) + Z Ceil (2"14t 

Here fo is the isotropic part of the electron distribution function. For a 
Maxwellian distribution function, D = 2TJrn e. Within this approximation, 
the electron-electron collision operator coincides with its linear part as 
defined by (2.4). Note that if one writes C~c= C~a2+3C~c, 3Co~ has a 
negligible influence on high velocities, which govern high moments of the 
electron distribution function, such as the heat flux. However, ~SCee is 
necessary to ensure the density and overall energy conservation. 

The linear theory, which coincides with the first order of the 
Chapman-Enskog expansion, gives 

Qhf =OhOfh (2.15) 

where Gh is the inverse of the operator C~i+Cec, and O is the free 
streaming operator. For an unmagnetized plasma 

O = 0 ~ + v . V  (2.16) 
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(In this paper we do not consider the electric field effects. They have been 
considered in Ref. 11 in some detail. We have shown that the electric field 
does not modify significantly the essential results of the theory. For the 
clarity of the present paper, we se re  = 0). Then, one obtains for the heat 
flux (11) 

q =20 12"~ 1/2 ne (Te" ~ 1/2 2~ QT~(Z+l)(ZZ+9"8Z+21"2) 
(2.17) 

\me/ 8x (Z + 3)(Z + 5)(Z + 7) 

where 

Z~ = 8T~Jc~(Z + 1) m 2 

With the exact electron-electron collision operator, Spltzer 
H/irm (6) obtain slightly different result. 

The next order of the Chapman-Enskog expansion gives (12) 

where 

K S T I 1 + 6 ~ (  2e ~T'~ 2 
q = -  ~x \ ~T--ee -~x J 

+ 62 ~e"-~X2J + 63 \2Te] \~?XJ ~X3J 

and 

(2.18) 

61 = [7.8(Z+ 1)+ 13.1] x 103 

52-- [4.88(Z+ 1)+7.74] x 103 

63= [0.3(Z+ 1)+0.45] x 103 

The second order correction is already of the same order of magnitude 
as the linear flux when the latter is only 10 percent of the free streaming 
value nem~V3e . Furthermore, as one expects for an asymptotic series, the 
next orders of the Chapman-Enskog expansion are even larger. The fact 
that the coefficients 61, 62, 63 are already very large indicates a strong 
divergence (see further Section 3.3), and removes any physical meaning 
from Eq. (2.18). However, we show in Section 4 that one can extract a 
physical meaning from this type of formula by using appropriate resum- 
mation methods, such as the Pad6 or the Borel-Pad6 approximants 
methods. Before presenting these resummation techniques, we proceed with 
the more heuristic iterative method of the next section. 
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3. THE ITERATIVE M E T H O D  

3.1. The Principle of the M e t h o d  

As it was clear that the Chapman-Enskog expansion suffers from 
strong divergencies, we have proposed an iterative method, which will be 
shown in Section 3.3 to be equivalent to successive infinite resummations of 
these divergencies, and which is based on simple physical grounds. 

Let us consider Eq. (2.14) for the asymptotic form of the electron- 
electron collision operator. The last term is easily taken into account by a 
slight modification of the electron ion collision term 

Z + I  
Cei = - -  C~i (3.1) 

Z 

The other two terms correspond, respectively, to a friction Fee and a 
parallel diffusion De~ 

Feef = ~ O v f  (3.2) 

D (3.3) Dee f = ~'~ a, ~vv a. f 

Equation (2.1) can now be written under the form 

( 0  -- C e i -  fee)f  = Dee f (3.4) 

which, as already mentioned for Eq. (2.14), is linear as soon as the 
hydrodynamic quantities, density and temperature, are given. Then one can 
write 

f =GDeof (3.5) 

where G is the inverse of the operator O - C ' e i - F e e .  Equation (3.5) is then 
iteratively solved 

f(,) = GDeef(,- 1) (3.6) 

with f(o) = fh. 
The method has a number of advantages: 

(i) The operator O -  C ; i -  Fee is found to be "solvable"--we mean 
that we know how to inverse it. Its inverse G is a nonlocal kernel, which 
corresponds to an asymptotic expansion of local operators. 

822/43/1-2-19 
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(ii) Each iteration has a simple physical meaning: the parallel dif- 
fusion term Dee "heats" the distribution function, the propagator G trans- 
ports it, in the presence of elastic collision and friction. This approach 
respects the mechanism of diffusion of a heat front. 

(iii) When external sources exist in the plasma, for instance, the 
energy absorption of an electromagnetic wave, a straightforward extension 
of the method enables to treat them. (~3) 

The method can be extended to any kinetic equation, provided that 
one can split the linear operator Lh into two parts Lh = L I +  L2, where 
O -  L1 is "solvable." The splitting has to be based on physical grounds as 
here. The method is heuristic in the sense that we have not rigorously 
proved its convergence. However, in the case of a kinetic plasma, it proves 
to be very powerful since the first iteration already gives a very good 
approximation of the final result. Furthermore, comparison with numerical 
resolution of the time dependent Fokker-Planck equation (14-15) brings con- 
fidence into the method. 

3.2. Fur ther  S imp l i f i ca t ions  for  a Kinet ic  Plasma 

Further simplifications appear in the case of a kinetic plasma. They 
are detailed in Ref. 11, but will only be outlined here. 

(a) The diffusive angular approximation. The spectrum of the 
operator O-C'ei-Fee has an infinite number of branches, each one 
corresponding to the relaxation of angular anisotropies. One has only to 
take into account the first one, the diffusive branch. The other branches 
can usually be neglected, essentially because of the rapidly increasing eigen- 
values of the electron-ion collision operator, which behave as -n(n + 1). 
In other words, if one expands the electron distribution function on the 
angular Legendre polynomials, one needs only to keep the first two 
(or three) terms of the expansion, except for very strong inhomogeneities. 
Note that this property is not applicable to any kinetic collision 
operator. (11) The divergency of the Chapman-Enskog expansion is usually 
twofold, and appears in the angular dependence as well as in the energy 
dependence. In the case of the kinetic plasma, the divergency appears only 
in the energy dependence. Therefore we have defined the so-called P,,~ 
approximations, where the electron distribution function is truncated by an 
expansion on the n first Legendre polynomials, while electron-electron 
collisions are kept only on the m first components (m<.n). The P32 
approximation was found sufficient and was used in the numerical 
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calculations of Ref. 11. In this paper, for the sake of simplicity and clarity, 
we use the P21 approximation (which is sufficient for large Z): 

f (x ,  v, t)= fo(x, v, t)+ x ~  (vx/v) fl(x, v, t) (3.7) 

Neglecting hydrodynamic terms of order cJv~, where cs is the ion acoustic 
velocity, which appear in the transformation between the local ion frame 
and a gallilean frame, one obtains the P21 equations 

1 ( z +  1 
V3 )O~fl ~,f~ + - - V ~ x f o -  

(3.8) 

(3.9) 

(b) The quasi-static approximation. The second major simplification 
in the case of an unmagnetized kinetic plasma consists in the fact that one 
can neglect the time derivatives in Eqs. (3.8) and (3.9): the electron dis- 
tribution function slowly evolves as compared to the electron-electron 
collision time, which governs the time relaxation off0.  Let us justify this 
approximation. We write Eq. (3.5) under the form 

f =GS (3.10) 

where S=Dee f appears as a source term. The propagator G includes a 
time delay At ~ - v3/e which has a clear physical meaning: the electrons are 
"created" by the source S at the time t - A t ,  propagate, and are finally 
slowed down after an electron-electron collision time, constructing the dis- 
tribution function with a spatial spread with respect to the source S. The 
spatial spread associated with the heat flux, and more generally with high 
moments of the distribution function, is larger than the characteristic 
length associated with the diffusion of the heat front during the time At, so 
that one can neglect At in the propagator G, or equivalently one can use 
the propagator Go obtained by neglecting the c3 t terms in Eqs. (3.8) and 
(3.9). Indeed, as we will see in Section 3.3, the effect of Go is to delocalize 
the moment Mg~_~fov2n+ldv with respect to the source with a charac- 
teristic length 2n~n 3/2. The electrons which mainly contribute to the 
moment M~ have a velocity vn~nl/2v, so that they cover the distance 2, in 
a characteristic time At~ given by 

,~. = (D .  At,,) '/2 (3.11) 
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where D n is the diffusion coefficient of such electrons, 

2 
1)n (3C_ " 5 n5/2 D. = - -  _ % oc 
Vn 

so that one finds 

(3.12) 

~2 
Atn=- -"  </71/2 (3.13) 

Dn 

During Atn, the temperature, to which D is proportional in Eq. (3.8), and 
which corresponds to M 3/2, has diffused over a distance 

(D3/2~1/2 ( ~ )  5/4 
2 = An \--D~J = 2,, (3.14) 

These distances correspond to nearly exponential behaviors, so that the 
numerical factor (2n/3) 5/4 can be considered as significantly large for high 
moments (for instance the heat flux is associated with n =4)  and these 
moments, when calculated either with the time dependent propagator G or 
with the time independent propagator Go will be nearly identical. This 
justifies the quasi-static approximation. 

3.3. Delocal izat ion Formulas 

With the above simplifications, it is possible to solve analytically 
Eqs. (3.8) and (3.9) with 0, = 0, at least the first iteration of the iterative 
algorithm (3.6), which already exhibits the essential features of the 
problem. 

We first define the normalizations used in the following. Let To be a 
characteristic temperature--for instance, the temperature at the top of the 
heat front. We define the normalized kinetic energy y = mev2/2To, the nor- 
malized temperature D ( x ) =  Te(x)/To,  and the normalized lengths, d X =  
dx/2e(ne, To). The P21 equations now read 

f l -  2 ~ y2 fo (3.15) 

Z + I  02 
- 24 OX 2 y4f~ = y ay(fo + D ( X )  OyfO ) (3.16) 

Using as a zero order distribution function f(o) the local maxwellian 
distribution function f h, one obtains after the first iteration of (3.6) for the 
moment 

fo o M~ = f(ol)y n dy (3.17) 
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the following result 

f+~ dX' 
M ; ( X )  = ~ A.(s)  S';(X') D2(X,) (3.18) 

where s = IX-X'I/D2(X'), 

S; = f(o~ '~ dy (3.19) 

and An is the delocalization kernel given by 

A.(X)=~ L(z+ 1)~ j dy lexp(-- y) 

x d~ (1 - z4)l/a exp - ( Z + I  
24X 2 

y4(1 -- "C4)] (3.20) 

The fluxes 

E M"~ = f~tty" dy (3.21) 

satisfy similar relations. In particular, the heat flux is proportional to My 
with 

f+oo Mz(x )=  W2(s) 0sn(X') dZ' o~ D2(X,) (3.22) 

where 

m2(s ) = A4(s ) - 4(d/ds)(sA4) (3.23) 

and Qsn is the linear Spitzer-H/irm normalized heat flux in the P21 
approximation (for an isobaric plasma), 

OSH(X)= --10 ~ D ( X ) 3 / 2 ( d D / d X )  (3.24) 

Equation (3.22) corresponds to the first iteration of (3.6). Further 
iterations do not significantly modify the value of the heat flux. A 
numerical resolution of (3.6) including the electric field, and using the P32 
approximation was found to give a heat flux well fitted by an analytical 
formula similar to Eqs. (3.22) and (3.23), with 

W ( s ) = ~ e x p  - (3.25) 



292 Luciani and Mora 

2a is the delocalization length associated with the heat flux 

2d ~- 5.5 [ (Z  + 1)/2] 1/2 (3.26) 

Let us summarize the properties of the function An. One can show (11) 
that 

dAn + 2/ds = - f lnAn (3.27) 

2 F[(n + 3)/4] ( 24 .]1/2 
fin= (n+  1)(n + 2 ) r [ ( n +  1)/4] \ z +  lJ (3.28) 

For a homogeneous plasma, M~ is identical to S~, as it should be, since 

f + ~  A,(s) ds = 1 (3.29) 
,J 

- - o o  

One can calculate the moments of the functions An. In particular, we define 
the delocalization length 2n by 

fo ~ 1 F(n + 5) Z + 1 
22 = An(s) s 2 ds - fl ,fl ,  +---~2 - F(n + 2--~) 2 ~  (3.30) 

where we have used (3.27) to perform the integration. These lengths appear 
as thermalization lengths of the moments M~. In particular )-4 is the 
delocalization length associated with the thermal flux, and we have 2 4 "~ 2 d. 

where 

3.4. The Link with the Chapman-Enskog Expansion 

We now establish the link between the first iteration of our algorithm 
and the Chapman-Enskog expansion. As a matter of fact one can expand 
both method in power of the spatial derivative c~/OX. This expansion is the 
basis of the Chapman-Enskog method for which 

f o=  Z f(o k) (3.31) 
k 

Z + I  0 2 
24 ~?X 2 Y4f(~ y ~?Y(f(~ D(X) C3yf(02k+2) ) (3.32) 

The solution of the first iteration f(o 1) of our algorithm can be similarly be 
expanded 

f(o,} = • f~,k (3.33) 
k 

Z + I  02 y4f~,2k ~sf~,2k+2 (3.34) 
24 ~?X 2 = y 
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The difference between the two expansions lies in the parallel diffusion 
term. It is possible to s h o w  (16) that expansion (3.33) is in fact a subseries of 
the Chapman-Enskog expansion (3.31), and that it is "less divergent" than 
the Chapman Enskog expansion, so that the evaluation of the divergent 
character of (3.33) underestimates the divergent character of Chapman-  
Enskog. To show this divergent character, let us expand A,(s) in sum of 
successive pair derivatives of the 6 function 

with 

A,(s) = ~ c~]k6(2k)(s) (3.35) 
k 

f +  oo S 2k 
2k A,(s) ~ .  ds (3.36) O~ n 

oo 

Let us consider a test function f (X) and calculate ~ M~(X) f(X) dX using 
Eqs. (3.18) and (3.35) 

D2(X') k 

= Z o~2nk f dx' g~(X') D4k(X') f(2k)(S ') (3.37) 
k 

Further integrating by part, one obtains, as f (X) is arbitrary 

2k ( (~ x~ 2k 
Mg(X') = ~ a n \~-~) D4k(X) S~)(X) (3.38) 

This equation shows that the asymptotic form of a delocalization formula 
is an infinite sum of local operators. Note that if one keeps only the first 
two components of this sum for n = 4, and applies the operator O/~X to 
calculate the heat flux, one obtains a formula similar to (2.18). 

The character of the divergence of this expansion is essentially given 
by the behavior of a,2k. Using Eqs. (3.27), (3.30), and (3.36), one obtains 

2 k  _ _  , ] 2 .  2 k - - 2  (3.39) O~ n --  .~n~n+4 

so that 

2 k  _ _  " 2  " 2  . . . ~ 2  
O~ n - - ~ n ~ n + 4  / i n  + 4 k _  4 

As [Eq. (3.30)] 22 behaves as  rt 3, one obtains 

2k (k!)3< % oc (3k)! 

(3.40) 

(3.41) 
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This equation exhibits the rapidly divergent character of the Chapman-  
Enskog expansion. Note that this character is due to the velocity depen- 
dence of the collision frequency. For v(v) oc v -p instead of v(v) ~: v-3, one 
would obtain " 2k oc (k!) p. (/'n 

4. R E S U M M A T I O N  METHODS 

4.1. The Pad~ Approximant Method for the Moments of the 
Distribution Function 

Let us summarize the preceding sections: (i) The essential physics of 
our problem lies in the (spatially) nonlocal character of the fluxes with 
respect to the macroscopic quantities, density and temperature, defined 
with reference to a local equilibrium. (ii) The Chapman Enskog expansion 
in local operators is asymptotic. Nevertheless this expansion contains infor- 
mation. We show in this section that it is possible to extract this infor- 
mation with the use of Pad6 approximants ~17) for the operators appearing 
in the Chapman-Enskog expansion, and we establish the link with the 
iterative method presented in the previous section. 

Let us consider the Chapman-Enskog expansion, Eqs. (2.9) and 
(2.10). One can compute each velocity moment of this equation, and thus 
express each moment of the electron distribution function as a series of 
local operators acting on hydrodynamic quantities. The basic idea is now 
to construct, for each velocity moment, a nonlocal o p e r a t o ~ m o r e  
precisely a propagator-- to which the series is asymptotic. 

Let us write the Chapman-Enskog expansion in the following form 

f =  ~ ek(RkO)kPhf (4.1) 
k = 0  

where we have omitted the bilinear term C(Qhf, Qhf). A generalization of 
what follows including this bilinear term is possible (16/but is not done in 
this paper. The factor a ~ has been added to indicate the scaling of the 
expansion. We recall that: ( i ) P h f  is the local maxwellian distribution 
function and is defined by the fluid quantities; (ii) Rh also depends only on 
fluid quantities; (iii) O is a local differential operator. 

Let (n / f )  be a linear form on the distribution function f .  For each 
such moment, we want to define from (4.1) a series of operators acting on 
the functions of x = (r, t). (In practice these functions are the macroscopic 
quantities defining Ph f). To do this, it is necessary to "separate" the source 
Ph f in the following way. 

Phf(x) = [ Phf(x') 6 ( x -  x') dx' (4.2) 
d 
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Then 

< n/f > = f dx' ~ ~ ( n/(R~ 0)~ P~ f(x') ) a(x - x') 
k 

(4.3) 

f dx' <n/e, , f>(x ' )  ~ ~ ~ x' = ~ O~(x, ) 6 ( x -  x') 
k 

(4.4) 

k t D,(x, x ) is a local differential operator on the x space, and its coefficients 
depend on x via Rh(X) and x' via Ph(x'). We now define the Pad6 
approximant p~,N for the series ~2k ~ x e D,,(x, x') 

p~.N = (QN) I p ~  (4.5) 

where P ~  and Q~ are polynomials of operators, of order, respectively, M 
and N in e, and such that the expansion of p~,N in power of e coincides 
with the expansion ~2 k k e D~ until the order M + N .  Then we define the 
propagator R~'N(x, x') solution of the equation 

Q~'/RM,N M ~ f --n = P~ O ( x - x  ) (4.6) 

so that the corresponding Pad6 approximant for the moment ( n / f )  is 
given by 

<n/f )(x) = f dx' (n/Phf)(x') RyN(x, x') (4.7) 

Thus we obtain for each moment ( n / f )  a delocalization formula similar to 
Eqs. (3.18) and (3.22), which was obtained after the first iteration of the 
method presented in the previous section. 

Before illustrating the method of Pad6 approximants in the case of a 
kinetic plasma, we make some important remarks: ( i )I t  is not possible to 
define linear operators acting on the functions of x without "separating" 
the source P h f  as we did in (4.2). The Pad6 approximant method naturally 
leads to delocalization formulas analogous to the formulas (3.18) and 
(3.22) obtained after the first iteration in Section 3. (ii) This formalism can- 
not be reduced to the truncature of a system of coupled equations invol- 
ving different moments, as is done in Grad's approach. (i i i)The moments 
corresponding to the density and the temperature are not concerned by this 
formalism, as Qh projects on distributions which do not contain density 
and energy. Thus, there is no Pad6 approximant for the fluid equations, 
but only for the moments (the fluxes) which appear inside. (iv)Finally, the 
existence of the Pad6 approximants is not linked with the noncom- 
mutativity of operators, but with the existence of the inverse of some 
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operators. However, we do not address these questions in this paper. We 
will simply see in the next subsection that these approximants indeed exist 
in the case of a kinetic plasma. 

4.2 L. Appl icat ion to the Case of a Kinetic Plasma 

Let us consider again the P21 approximation for which the kinetic 
equation reads 

1 ~2 4 4 
Ot y3/2fo - -~ OX----- 5 y ~fo = ~ Y ay(fo + D(X)  ~y fo) + 3C (4.8) 

where we have included the normalized time dependence, and 3C is the 
correction between the exact electron-electron collision operator and its 
high velocity approximation used so far. If we set that O/OX is of order e, 0t 
is of order e 2, and the moments of fo correspond to even Pad6 
approximants [M, N]. 

The choice of M and N is a priori arbitrary. Of course the Pad6 
approximants [M, O] are successive truncature of the Chapman-Enskog 
expansion and do not bring new results. By analogy with the Stieljes 
series, (17) we conjecture that the Pad6 approximants which have the best 
properties of convergence are the diagonal or nearly diagonal 
approximants, M-~ N. More precisely, to respect the nonlocal character of 
the physical problem, we choose N =  M or N =  M +  2 for the isotropic 
moments M~, and N = M -  1 or n = M + 1 for the fluxes. The linear theory 
corresponds to the approximations [0, 0] for M; and [1,0] for MT. 
Delocalization formulas similar to Eqs. (3.18) and (3.22) correspond to the 
approximations [0, 2] and [1, 2]. Let us calculate the Pad6 approximant 
[0, 2] for the moment M~. The corresponding approximations [1, 2] for 
the fluxes are easily deduced (see Section 5). 

As indicated in Section 2.2, 6C has a negligible influence on the high 
order moments. Correlatively, as in Section 3 we do not explicitly introduce 
the projectors Ph and Qh, the difference between the exact theory such as in 
Section 4.1 and the following one being of the same order of magnitude as 
the error due to the fact that we neglect 6C. 

Let us first perform the Chapman-Enskog expansion to the second 
order in power of a. We write 

fo = fh + f(o 2) (4.9) 

and f(o 2) is the solution of 

4 1 92 
Z +------1 y OY(f(~ + D(X)  ~yf(o 2)) = ~t Y3/2fh - g 0X----7 Yafh (4.10) 
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Then we write 

fhOL t) : f dX' dt' fh(X', t') 6 ( X -  X') 3(t - t') (4.11) 

Rather than solving Eq. (4.10) for f(o 2), we directly take the moments of 
Eq. (4.10) by multiplying it by y , + l  and integrate over y. We obtain an 
equation which relates M~ and M~-1 that we solve iteratively. Finally we 
obtain 

M~(X, t)= I dX' dC S~(X', C ) [ 1 -  VI(X, t, S', r)a,  

+ v2(x , t ,x ' , t ' )32/SX 2] 3 ( x - x ' ) & ( t - t ' )  (4.12) 

with 

v l (X,  t, X', t ' ) -  

v2(x ,  t, s ' ,  t') = 

Z + 1 F(n + 5/2) D,3/2 
4 F(n + 2) 

I n+ 1 D n(n+ 1) D 2 ] 
• 1-} D' § J (4.13) n + 3/2 (n + 1/2)(n + 3/2) D '2 }- " 

Z +  1 F(n + 5) D,4 
24 F(n + 2) 

n + 1 D n(n + 1) D 2 ] 
x 1 + - -  + - -  J (4.14) n + 4 D '  (n+3)(n+4)D '2+' '"  

where D=D(X, t )  and D'=D(X',t ' ) .  We define the propagator 
02 t R n, (X, t, X,  t') solution of the equation 

[1 + VI~ t V2 02/(~X2]  02 - R# (iv, t, X,  t ' )=6(X- -X ' )&( t - t ' )  (4.15) 

so that the Pad6 approximant [0, 2] for M~ is given by 

M•(X, t)= f dX' dt' So(X', t') 02 R n' (X, t, X,  t') (4.16) 

/{0,2 has the form of a diffusive propagator, VI and V2 are "pseudo poten- 
tials" determined by the fluid quantities, R ~ here contains the time delay 
which was neglected in the quasi-static approximation of Section 3.3. VI is 
proportional to the time delay Ate. In the cold part of the temperature 
profile, D ~D' ,  one has 

Z + I  F(n At n q- 5/2) D,3/2 (4.17) 
4 F(n + 2) 
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This result justifies the estimate Eq. (3.13). Similarly, when D~D', V2 is 
equal to 22D '4 where 2n is given by Eq. (3.30). At the lowest order in DID', 
and neglecting the time delay V1, one obtains (for D ' =  1) 

1 I X - U I  0,2_ exp - -  6 ( t -  t') (4.18) Rn - }2-~ 2~ 

This expression corresponds to an exponential approximation of the 
functions An found in Section 3.3. One can also verify that the finite series 
in power of D/D' which appears in the expression of V2 corresponds to the 
successive iterations of the iterative method of Section 3. 

This series has a simple physical interpretation: the local temperature 
D reduces the friction with respect to the parallel diffusion, and enhances 
the effective thermalization length of an elementary "source." This effect has 
been checked with the numerical algorithm described in Ref. 11. 

4.3. The  B o r e I - P a d ~  M e t h o d  

In Section 3.4 we have shown that the operators k Dn(x, x') diverge as 
(3k/2)! For such a rapidly divergent behavior, the Pad6 approximant 
method used in the previous subsection is probably not the best suited one, 
though it exhibits the delocalization behavior of the problem and though 
the exponential approximations (4.18) were found sufficiently precise in our 
numerical results. (u'15~ 

Another difficulty is due to the fact that we approximate a series of 
operators. When we evaluated the divergency in (3k/2)!, we did not take 
into account the temperature profile which appears in (3.38), and we only 
estimated the intrinsic divergence which is contained in the kernel An. 
However, in Eq. (4.4), one may consider that the operators D~ exhibit an 
asymptotic series analogous to Eq. (3.38). The corresponding divergence is 
in (3k/2)!, though the final divergency depends on the exact temperature 
profile. 

Thus, one really has to find better suited approximation methods for 
the propagators RM'N(x, X'). A natural method in such problems (rapidly 
divergent series) is the Borel-Pad6 method. We expect that this method 
will yield refined approximations of the delocalization propagators Rn. 

Let us consider the expansion of operators which appears in Eq. (4.4) 

Fn(e) = ~ ekD~(x, x') (4.19) 
k 

which is here understood as an expansion in powers of e, the "coefficients" 
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D~ being operators. Let us assume that D~ behaves as (c&)! We construct 
the Borel-transform series 

12 k 

= ~ - -  Dn(x, x') (4.20) Gn(e) p! k 
(p + ~k)! T 

where p is a positive number, then we find the Pad6 approximant /~nM'N(e) 
from Gn(e) exactly as in Section 4.1, and then we invert the Borel transfor- 
mation 

lfo~ Ry 'x =~. dy e-YyPRy'N(W ~) (4.21) 

Finally we set s = 1 in Eq. (4.21). 
Let us perform the method explicitly in the case of a kinetic plasma 

(c~ = 2). The propagator/~~ is the solution of the equation 

i p! g2 p! E2 (~2 1 1-t (3+p)~ Vl~t (3+p)! V2~X --'~ R~ (4.22) 

At the first order in D/D', neglecting the time delay V1, and performing the 
inversion (4.21), one finally obtains (e= 1, D ' =  1) 

with 

RO,2=l  f o  YYP 1 ]X-  X'] (4.23) P! dy e-  ~ exp 2n(y) 

p~ 
2](y)-  2ny2 3 (4.24) 

(3+p)! 

Equation (4.23) is a better approximation of the functions An than the 
exponential approximation (4.18) derived with the Pad6 approximant 
method. In particular, Eq. (4.23) exhibits a positive curvature (in 
logarithmic units) as A n does. 

In the preceding calculation, we did not specify the value of the 
parameter p. As usual in resummation techniques, there is some freedom in 
the choice of p, as there was in the choice of M and N in the Pad6 
approximant method. Probably, certain values of the parameter p will be 
"better choices" than others. By presenting a complementary technique in 
the next subsection, we will show that p = n is a "good choice." For p = n, 
Eqs. (4.23) and (4.24) become 

R o,2= 1 f ? .  e--Yy n I x ' -  X'I (4.25) ay exp 2n(y ) 
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n + 4 Z + l  
_ _  _ _  y3 (4.26) 

)~](Y)-n+ 1 24 

4.4. The Pad& Approximant Method for the Distribution 
Function Itself 

As a final illustration of the resummation methods, we present the 
Pad6 approximant method for the distribution function itself, and show the 
similarity with the previous Borel-Pad~ method for the moments of the dis- 
tribution function. 

Let us come back to Eqs. (4.10) and (4.11). We now solve for the dis- 
tribution function itself. To simplify the algebra and make the comparison 
easier with the previous subsection, we neglect the time delay and keep the 
lowest order term in power of DID'. Keeping also the leading term for 
large y (we recall that we are interested in the behavior of high moments, 
for which the main contribution comes from large y), we obtain 

The [0, 2] Pad6 approximant gives 

, 1 
fo(X, y) = j d x  exp 

with 

I X - X ' I  
X' 

- -  fh( , Y) (4.28) ~(y) 

Z + I  
22(y) = - - ~  D'y 3 (4.29) 

Then calculating the moment Mg, one finally obtains (for D ' =  1) 

1 fo ~ , e yyn I X - X ' I  (4.30) 
R~ =~.  aY 2-~- )  exp 2(y) 

We notice that, except for the factor (n+4) / (n+ 1) appearing in the 
definition of ~.](y) in Eq. (4.26), Eq. (4.30) is identical to Eq. (4.25) which 
was obtained with the Borel-Pad6 method with p = n. 

5. S U M M A R Y  AND CONCLUSION 

Equations (3.18), (4.18), (4.23), (4.25), and (4.30) are various forms of 
delocalization formulas for the moments M~ of the isotropic part fo of the 
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distribution function. Delocalization formulas for the fluxes M7 are easily 
deduced from the delocalization formulas for M; + 2, as 

M T =  2 ~ 0.~5M~+2 (5.1 

If Q7 is the linear flux, and Rn(s) the delocalization kernel for the isotroplc 
moment Ma, one has 

f+oO dx t 
M~(X) = -oo W,(s) QT(X') D2(X,) (5.2) 

where 

4 d 
W . ( s )  = R .  + 2(s) ( sR .  + 2) (5.3) 

2n+ 1 ds 

and 

Q] ' -  2 ,,/-502 S• + 2 (5.4) 

(Equation (5.3) corresponds to isobaric situations.) 
We have shown in this paper that such formulas can be obtained 

either by the first loop of an iterative method, or by Pad6 or Borel-Pad6 
approximants of the Chapman-Enskog expansion. We have developed the 
theory in the case of an unmagnetized kinetic plasma, for which the 
methods are simplified by the fact that one can use the quasistatic 
approximation. However, the formalism developed here is general and 
could lead to fruitful results for other kinetic equations. Using the [1, 2] 
approximations for the fluxes, we have obtained simple expressions relating 
the nonlinear fluxes to the linear ones by a nonlocal convolution equation 
[Eq. (5.2)]. These formulas are widely justified in Sections 3 and 4, and are 
of particular interest in the case of steep gradients in a number of physical 
situations. 
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